Optimized Fuzzy MRAS-based Sensorless control of Electric Vehicle Powertrain

Zakaria SEBBOUA
Electrical and Industrial system Laboratory (LSEI)
University of science and technology Houari Boumediene (USTHB)
Algiers, Algeria
zsebboua@usthb.dz

Kenza BOUHOUNE
Electrical and Industrial system Laboratory (LSEI)
University of science and technology Houari Boumediene (USTHB)
Algiers, Algeria
kbouhoun@usthb.dz

Krim YAZID
Electrical and Industrial system Laboratory (LSEI)
University of science and technology Houari Boumediene (USTHB)
Algiers, Algeria
kyazid@usthb.dz

Abstract— The paper investigates the performances of speed sensorless indirect field-oriented control of two induction motors used to propel an electric vehicle. The powertrain model, which includes induction motor, electronic differential and vehicle models, is first presented, then an adaptation mechanism based on fuzzy logic controller is designed and optimized by genetic algorithms to ensure the optimal operation of the model reference adaptive system speed estimator. The simulations performed with MATLAB/Simulink software show satisfactory performances of the Fuzzy-MRAS speed sensorless control over different road conditions.

Keywords— Sensorless control; Electric vehicle (EV); Model reference adaptive system (MRAS); Genetic algorithms (GA); Fuzzy logic controller (FLC); Induction motor (IM).

I. INTRODUCTION

Transportation and mobility play an important role in socio-economic development and business around the world and form a large part of operation in cities [1]. The transport sector has significantly relied on internal combustion engines which consume fuel fossil and emit harmful gases such as carbon dioxide gas [1,2]. Therefore, combustion vehicles contribute to air pollution, global warming and the energy crisis [3]. Furthermore, the combustion engine’s energy efficiency is poor. At the present, Vehicle electification is seen as the main solution to overcome the energy and environment related issues caused by the transport sector. Researchers are expecting to develop energy-efficient, emission-free, and high-performance electric powertrains [3].

The development of electric vehicles has led to the use of various electric machines to electrify the powertrains. The induction machine, is one of the promising traction machines available in the market because of its low cost and high reliability [4,5]. In order to meet the speed and torque requirement intended for use in automotive applications, the IM control strategy is also important as the motor itself. However, optimization of the control strategy is even an essential aspect enabling high performance drive.

Sensorless control drives offer significant advantages in terms of efficiency improvement by avoiding the need for expensive, low-reliability and large sensors. Thus, they contribute to increase the system’s reliability by simplifying system’s hardware and reducing its size and cost. Hence, sensorless control is recommended for hostile environment applications such as electric vehicle.

Several speed-sensorless induction motor techniques have been proposed in the literature in recent years. These techniques are classified into two classes [6,7]: (i) signal-injection based techniques and, (ii) IM model-based techniques. The last category include Model Reference Adaptive System (MRAS) [10-12], adaptive observer [13], extended Kalman filter [8] and sliding mode observer [9]. In sensorless drives control, MRAS approach is one of the most used technique due to its simplicity and low computational complexity compared to the other techniques.

The paper proposes an optimized fuzzy logic controller (FLC) for speed sensorless control of an electric vehicle propelled by two induction motors with Indirect Rotor Flux Oriented Control (IRFOC) strategy. The optimized FLC is used as adaptation mechanism in rotor flux-based MRAS estimator. In order to achieve the best performances of proposed Fuzzy-MRAS estimator, FLC gains are optimized using genetic algorithms. The Proposed control is verified using MATLAB/Simulink with different road conditions.

II. ELECTRIC VEHICLE POWERTRAIN MODEL

A. Induction motor dynamic model

The state space representation of the induction motor in synchronous rotating frame is given as follows:

\[
\dot{x} = Ax + Bu \\
y =Cx
\]

with:

\[
A = \begin{bmatrix}
\frac{1}{\omega_s} \left(\frac{R_1}{L_{m1}} + \frac{L_m^2}{L_{m1}} \right) & \frac{L_m}{\omega_s \ell \omega_s} & \frac{L_m}{\omega_s \ell} \\
-\omega_s & -\frac{1}{\omega_s} \left(\frac{R_1}{L_{m1}} + \frac{L_m^2}{L_{m1}} \right) & -\frac{L_m}{\omega_s \ell} \\
\frac{L_m}{\ell} & 0 & -\frac{1}{\ell} \\
0 & \frac{L_m}{\ell} & -(\omega_s - \omega) \\
\end{bmatrix}
\]

\[
b = \begin{bmatrix}
0 \\
0 \\
0 \\
1 \\
\end{bmatrix}
\]

\[
c = \begin{bmatrix}
1 \\
0 \\
0 \\
0 \\
\end{bmatrix}
\]
mechanical model:
\[j \frac{d\Omega}{dt} = T_{en} - k_1 \Omega - T_e \]

with:
\[T_{en} = p \frac{L_m}{L_s} (\varphi_r - \varphi_w \varphi_{w1}) \]

B. Indirect field oriented control

Rotational field-oriented control is realized by aligning rotor flux with the d-axis as follows:
\[\begin{align*}
\varphi_{ds} &= \varphi_r \\
\varphi_{qs} &= 0
\end{align*} \]

From motor torque and rotor flux references, the rotor FOC equations are derived based on IM model (1) as follows:
\[\begin{align*}
I_{ds} &= \frac{L_s T_{en}^*}{p L_r \varphi_r} \\
I_{qs} &= \frac{1}{L_m} (T_d^* \frac{d \varphi_r}{dt} + \varphi_{w1}^*) \\
V_d &= R I_{ds} + \sigma \varphi_r \frac{d I_{ds}}{dt} + I_{ds} \omega \sigma \varphi_{w1} \\
V_q &= R I_{qs} + \sigma \varphi_r \frac{d I_{qs}}{dt} + I_{qs} \omega \sigma \varphi_{w1}
\end{align*} \]

The motor torque and rotor flux references are the outputs of speed controller and flux weakening bloc (9), respectively [14].
\[\varphi^* = \begin{cases}
\varphi_r & |\Omega| < \Omega_m \\
\frac{\Omega_m}{\Omega} \varphi_r & |\Omega| > \Omega_m
\end{cases} \]

The control variables are given by:
\[\begin{align*}
V_{ds1}^* &= V_{ds1}^* + \frac{L_s}{L_r} \frac{d \varphi_r}{dt} - \omega \sigma \varphi_r I_{ds1} \\
V_{qs1}^* &= V_{qs1}^* + \omega \frac{L_s}{L_r} \varphi_r + \omega \sigma \varphi_r I_{qs1} \\
\omega_0 &= \omega_0 + \frac{L_s}{L_r} \varphi_r I_{ds1}
\end{align*} \]

with:
\[\begin{align*}
V_{ds1}^* &= R I_{ds1} + \sigma \varphi_r \frac{d I_{ds1}}{dt} \\
V_{qs1}^* &= R I_{qs1} + \sigma \varphi_r \frac{d I_{qs1}}{dt}
\end{align*} \]

\[V_{ds1}^* \] and \[V_{qs1}^* \] are obtained through two PI current controllers.

C. Vehicle dynamic model

The vehicle model is deduced from the longitudinal dynamic. The total resistive force \(F_{res} \) applied to the vehicle is the sum of the grad (gravitational force) \(F_{grad} \), rolling resistive force \(F_{roll} \) and the aerodynamic drag \(F_{aero} \) [15].
\[F_{res} = F_{aero} + F_{roll} + F_{grad} \]

with
\[F_{aero} = \frac{1}{2} \rho C_d A_v v^2 \]
\[F_{roll} = C_r M g \cos(\alpha) \]
\[F_{grad} = M g \sin(\alpha) \]

With, \(\alpha \) the slope angle and \(v \) the linear vehicle's speed in m/s.

Therefore, the motor torque required for traction, in two wheels independent drive case, is given by:
\[T_m = \frac{1}{2} \eta G \frac{F_{aero} r^2}{R} \]

The parameters are described in APPENDIX

D. Electronic differential model

When the vehicle has a banked curve (when cornering), the inner wheels travel lower distance than the outer wheels [16]. Hence, the inner and the outer wheels should be driven at different speeds to prevent vehicle from slipping. An electronic differential is used to adapt the two wheels’ speeds to the road conditions so that the inner wheels are slower than the outer ones. The turning movement is described by a simplified model as shown in Fig. 1 [17]. The relationships between the wheels' linear speeds, the turning radius and the vehicle angular speed are given by:
\[v_{in} = \Omega_v (R + \frac{d}{2}) \]
\[v_{out} = \Omega_v (R - \frac{d}{2}) \]

The radius of the curve is expressed as a function of wheelbase and steering angle as:
\[R = \frac{L}{\tan(\delta)} \]

the angular speeds of the two wheels are obtained by Substituting (22) in equations (20) and (21), :
\[(\Omega_v)_{in} = \Omega_v + \frac{L}{2} \frac{d \tan(\delta)}{L} \]
\[(\Omega_v)_{out} = \Omega_v - \frac{L}{2} \frac{d \tan(\delta)}{L} \]

The expression of the difference between the two wheels’ angular speeds is given by:
\[\Delta \Omega = (\Omega_v)_{in} - (\Omega_v)_{out} = \frac{d \tan(\delta)}{L} \Omega_v \]
The speed references for the inner and outer wheels are described as follows:

$$\Delta \Omega = \Omega_{in} - \Omega_{out} \quad (26)$$

$$\Delta \Omega = \Omega_{in} + \Omega_{out} \quad (27)$$

From (26) and (27), two speed controllers are used to produce two independent torques to drive the inner and outer wheels.

III. PROPOSED SENSORLESS CONTROL

The proposed sensorless control's block diagram is presented in Fig. 6. To estimate the speed by the MRAS approach, two models are used: the reference model which does not include the estimated speed and the adaptive model which involves the estimated speed. The two models' outputs are compared and used to estimate the quantity through an adaptation mechanism (Eq. 30 in the classic MRAS) that ensures the stability of the controlled system [11].

A. Classic model reference adaptive system

The speed estimation through the classical MRAS requires the estimation of the rotor flux space vector [10]. The reference and adaptive models are given by:

Reference model:

$$\begin{align*}
\frac{d}{dt} \varphi_\omega &= L_m \left(v_m - R_i - \sigma L \frac{d}{dt} i_\omega \right) \\
\frac{d}{dt} \varphi_\rho &= L_m \left(v_\rho - R_i - \sigma L \frac{d}{dt} i_\rho \right)
\end{align*} \quad (28)$$

Adaptive model:

$$\begin{align*}
\frac{d}{dt} \dot{\varphi}_\omega &= \frac{L_m}{T_r} i_\omega - \frac{1}{T_r} \dot{\varphi}_\omega - \omega \dot{\varphi}_\rho \\
\frac{d}{dt} \dot{\varphi}_\rho &= -\frac{1}{T_r} \dot{\varphi}_\rho - \omega \dot{\varphi}_\omega \quad (29)
\end{align*}$$

B. Fuzzy logic controller based MRAS with genetic algorithms optimization

Fig. 2. presents the structure of the proposed GA-Fuzzy MRAS approach, where, an adaptation mechanism is designed based on a Mamdani type fuzzy logic controller in MRAS speed estimator. The FLC has two inputs, which are the speed tuning signal and the change in the speed tuning signal, and one output.

The change in speed tuning signal is expressed as:

$$\Delta \varphi = \varphi(k) - \varphi(k-1) \quad (32)$$

Both output and input signals are multiplied by scaling factors (gains) to adapt the domain of the variable definition [18]. The proposed FLC is presented in Fig. 3.

The output and input variables are divided into seven sets \{NB, NM, NS, ZE, PS, PM, PB\}, and each set is represented by a membership function as presented in Fig. 4. Table 1 shows the 49 used fuzzy rules.

The choice of gains coefficients has a huge influence on the FLC performance. Usually, these coefficients are tuned by the trial and error method. Therefore, it is difficult to guarantee optimal performance. In the proposed method, the gains are optimized via genetic algorithms [19] which minimize the cost function (34) according to the optimization procedure presented in Fig. 5.

$$\text{Cost} = \int \varepsilon^* \, dt \quad (34)$$

IV. SIMULATION RESULTS

MATLAB/Simulink software is used to perform the simulations. The optimized FLC rotor flux-based MRAS speed estimator is simulated for two induction motor drives used to propel two wheels of the electric vehicle. Fig. 6 depicts the proposed sensorless control. Different phases (Fig. 7 and Table 2) have been considered to investigate the proposed FuzzyMRAS sensorless control. The results of simulation are depicted in Fig. 8, and the simulation parameters are provided in Table 3.
Fig. 3. Optimized GA - FLC structure

Fig. 4. Membership functions of inputs/output

Table I. Inference table

<table>
<thead>
<tr>
<th>Change in error $\Delta \omega$</th>
<th>NB</th>
<th>NM</th>
<th>NS</th>
<th>ZE</th>
<th>PS</th>
<th>PM</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NM</td>
<td>NS</td>
<td>ZE</td>
</tr>
<tr>
<td>NM</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NM</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
</tr>
<tr>
<td>NS</td>
<td>NB</td>
<td>NB</td>
<td>NM</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
<td>PM</td>
</tr>
<tr>
<td>ZE</td>
<td>NB</td>
<td>NM</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
<td>PM</td>
<td>PB</td>
</tr>
<tr>
<td>PS</td>
<td>NM</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
<td>PM</td>
<td>PB</td>
<td>PB</td>
</tr>
<tr>
<td>PB</td>
<td>ZE</td>
<td>PS</td>
<td>PM</td>
<td>PB</td>
<td>PB</td>
<td>PB</td>
<td>PB</td>
</tr>
</tbody>
</table>

Fig. 5. Genetic algorithms flowchart

Fig. 7. Driving phases

Table II. Driving phases parameters

<table>
<thead>
<tr>
<th>Phase</th>
<th>Time (s)</th>
<th>Vehicle speed (km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Starting</td>
<td>0-15</td>
<td>0.80</td>
</tr>
<tr>
<td>2 Curved road $\left(\delta = 10^\circ \right)$</td>
<td>15-30</td>
<td>80</td>
</tr>
<tr>
<td>3 Deceleration</td>
<td>30-45</td>
<td>80-60</td>
</tr>
<tr>
<td>4 Curved road $\left(\delta = -15^\circ \right)$</td>
<td>45-60</td>
<td>60</td>
</tr>
<tr>
<td>5 Climbing a slope $\left(\alpha = 10^\circ \right)$</td>
<td>60-80</td>
<td>60</td>
</tr>
</tbody>
</table>

Table III. Simulation parameters

| $37 \text{ kW} \text{ Induction motor parameters}$ |
|----------------------------------|---|-----------------|-----------------|-----------------|
| N_s | R_s | I_{ms} | K_t | J |
| 1480 rpm | 0.0658 Ω | 0.0291 Ω | 0.02791 Nm.s/rad | 0.37 kg.m^2 |
| p | I_s | K_t | J |
| 2 | 0.0314 Ω | 0.02791 Nm.s/rad | 0.37 kg.m^2 |
| R_s | 0.0851 Ω | 0.0291 Ω | 0.37 kg.m^2 |
| d | $C_{f\alpha}$ | C_a | r_w | g |
| 1.5 m | rolling friction coef. | 0.2 | 0.3 m | 9.81 m/s^2 |
| A_f | $C_{f\alpha}$ | 0.0015 | 0.3 m | 9.81 m/s^2 |
| m | C_a | 0.2 | 0.3 m | 9.81 m/s^2 |
| ρ | ρ | 1.225 kg/m^3 | 0.3 m | 9.81 m/s^2 |
| g | $g_{\text{gravity acceleration}}$ | 9.81 m/s^2 |

The simulation results show that the FuzzyMRAS estimator is able to track the speed accurately in different phases. Good references tracking and robustness to load variation are noticed. The decoupling is maintained.
Fig. 6. Bloc diagram of the FuzzyMRAS speed estimation with IRFOC IM drive for electric powertrain

Fig. 7. Simulation results show motor and vehicle speeds, electromagnetic torques and rotor flux
This work addressed speed sensorless electric powertrain control. The powertrain's two rear wheels are driven by two independent induction motors controlled by indirect rotor flux-oriented strategy. The proposed control is based on an FLC-MRAS technique. A fuzzy logic controller has been designed and optimized using genetic algorithms to be used as an adaptation mechanism in the rotor flux-based model reference adaptive system speed estimator. The speed sensorless control based on FuzzyMRAS has been simulated under different road conditions such as acceleration, slope climbing and curved road. Simulation results have shown satisfactory performances of sensorless control using the proposed optimized fuzzy logic controller based-GA, revealing its interest in traction motor drives, in particular EVs.

V. CONCLUSION

This research is supported by the national research project, under the A01107UN160420230008code.

ACKNOWLEDGMENT

REFERENCES